

Key concepts in Fisheries Biology

https://ec.europa.eu/eusurvey/runner/EMD2022Wor kshopN17Preserve_biodiversity_and_boost_resilienc e_to_climate_change_for_sustainable_fisheries

Preserve biodiversity and boost resilience to climate change for sustainable fisheries

Disclaimer

The European Commission is not responsible for the content of questionnaires created using the EUSurvey service - it remains the sole responsibility of the form creator and manager. The use of EUSurvey service does not imply a recommendation or endorsement, by the European Commission, of the views expressed within them.

European Maritime Day 2022, Workshop No 17:

Preserve biodiversity and boost resilience to climate change for sustainable fisheries.

[^0]e-mail address for the link: If you do not properly see this form and are interested to contribute to this consultation, leave your e-mail address, and we will send the link to your mailbox.

Select your country

Select your sector

Private company

- European institutioR\&D institution
University
Authority/Government
- NGO

Consulting
D) International organization

Ranking the statements from the most to the less relevant.

Use drag\&drop or the up/down buttons to change the order or accept the initial order.

	Strongly disagree -4	-3	-2	-1	Neutral 0	+1	+2	+3	Strongly agree $+4$
Fishing is unsustainable or destructive.	\bigcirc	\bigcirc	0	\bigcirc	0	0	0	0	\bigcirc
Marine ecosystems are mostly impacted by climate change, rather than fisheries.	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc
Oceans are so vast and fishery resources are so resilient, that there are no reasons to think they could be impacted and/or depleted by human activities.	\bigcirc	\bigcirc	\bigcirc	0	0	O	\bigcirc	0	0
Native and indigenous species are living parts of our natural heritage.	0	\bigcirc	\bigcirc	0	0	0	\bigcirc	O	0
We should increase species-specific fishing ban to protect the spawning and recruitment season of commercial species.	\bigcirc	0	0	0	\bigcirc	0	0	0	0
New Marine Protected Areas should be established in order to protect marine resources.	O	0	0	0	0	0	0	0	\bigcirc
An increase in biodiversity is not always something desirable.	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
The cultural value of marine species is more important than the economic one.	\bigcirc	0	\bigcirc	0	\bigcirc	O	\bigcirc	0	\bigcirc
Some marine species are more important than others.	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
The absence of generational turnover among fishers prevents the perception of the ecological value of marine species.	\bigcirc	\bigcirc	0	0	0	0	0	0	0
Sustainable exploitation of marine resources could be achieved through a lower production and a higher value of landings.	0	0	0	0	\bigcirc	0	0	0	0
Marine species have only a commercial value.	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc
The extinction of a species is not a big issue.	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
Stakeholders representing the sectors operating in the coastal areas are not interested in marine conservation.	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	O	\bigcirc	0	\bigcirc
No additional restrictions are needed for the fishery sector, what is lacking is the surveillance and the inspection of their compliance.	0	\bigcirc	\bigcirc	0	0	0	\bigcirc	0	0
Marine biodiversity is less important than in the past due to markets globalization.	\bigcirc	\bigcirc	0	0	0	0	0	0	0
High biodiversity ensures the exploitation of marine resources all year round.	0	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	0
Fishers do not perceive their impact on marine biodiversity.	\bigcirc	0	0	0	\bigcirc	0	0	0	\bigcirc
Temporal fishing bans should be extended.	\bigcirc	0	\bigcirc						
Marine predators threaten biodiversity and hence their catches should be favored.	0	\bigcirc	0	0	0	O	0	0	\bigcirc

Disclaimer, please visit:
https://www.termsfeed.com/live/82026a62-d28e-4cff-bd22-6ff4de0f05c2
or:

Download

82026a62-d28e-4cff-bd22-6ff4de0f05c2 en.pdf
e-mail address: If you are interested to know the result of this consultation leave your e-mail address, and we will send it to your mailbox. ©

Fishing is unsustainable and/or destructive.

Marine ecosystems are mostly impacted by climate change, rather than fisheries.

Ocean are so vast and fishery resources are so resilient, that there are no reasons to think they could be impacted and/or depleted by human activities.

Native and indigenous species are living parts of our natural heritage.

We should increase species-specific fishing ban to protect the spawning and recruitment season of commercial species.

New Marine Protected Areas should be established in order to protect marine resources.

Increase in biodiversity is not always something desirable.

The cultural value of marine species is more important than the economic one.

Some marine species are more important than others.

The absence of generational turnover among fishers prevents the perception of the ecological value of marine species.

A sustainable exploitation of marine resources could be achieved through a lower production and a higher value of landings.

Marine species have only a commercial value.

The extinction of a species is not a big issue.

Stakeholders representing the sectors operating in the coastal areas are not interested in marine conservation.

No additional restrictions are needed for the fishery sector, what is lacking is the surveillance and the inspection of their compliance.

Marine biodiversity is less important than in the past due to marketglobalization.

High biodiversity ensures the exploitation of marine resources all year round.

Fishers do not perceive their impact on marine biodiversity.

Temporal fishing bans should be extended.

Marine predators threaten the biodiversity and hence their catches should be favoured.

Lecture 1

- Who Iam
- A bit of history
- Key definitions \& concepts

Who I am

2008
MSc in Marine Biology and Oceanography

2009
Scholarship

2010-2013
Research Grants

2013-2018
Researcher (temporary)

Who I am

2016
PhD in Marine Biology and Ecology
2018-current
Researcher (permanent)

2016; 2018
FAO consultant

2020-current

FAO-GFCM National Focal Point (Recreational Fisheries Pilot Study; Blue Crab Programme)

Documents by subject area

$$
\text { This author's h-index } 11
$$

The h-index is based upon the number of documents and number of citations.

sustainability

an Open Access Journal by MDPI

Maritime Spatial Planning for Sustainable Fisheries

Guest Editor:
 Message from the Guest Editor

Dear Colleagues,
The aim of this Special Issue is to assemble a set of scienceThe aim of this Special Issue is to assemble a set of science-
based papers reporting how the maritime spatial planning process, in all its aspects, could enhance fisheries sustainability. Priority will be given to papers that includ hovel tools and approaches that will be useful to facilitate maritime spatial planning for the fishery sector. Papers are nvited from all countries and could describe specific cas studies that can contribute to better understand how to move forward in maritime spatial planning for sustainable

Dr. Luca Bolognini Guest Editor
or. Luca Bolognin
National Research Council (CNR)

- Institute for Biological
Resources and Marine
Biotechnologies (IRBM), Ancona
60125, taly
luca.bolognini@cnrit

Deadline for manuscript
1 December 2020
fisheries.

Other...

RESEARCH VISION

The reserch idea in the field of fisheries biology

"Mostly, you see fish only when they're caught... So if you study fish populations, you tend to get little pieces of information here and there. These bits of information are like the tip of the iceberg; they're part of a much larger story. Our job is to try to put the story together. We are a kind of detective, really, who assembles clues into a coherent picture."

The ecological detective, 1997

RAY HILBORN AND MARC: MANGEL

Outline Lecture 1

- A bit of history
 - Key definitions \& concepts

A medieval view of fishing, by Peter
Brueghel the
Elder (1556).

The current view ?

A bit of history

The Paleolithic mans', with his great desire for knowledge and discovery, started fishing. The first hooks were made of wood. In the age of copper and bronze, hooks changed material to become built with iron.

Native Americans used hawk claws and bones from various animals to make their hooks.

A bit of history

- In the past knowledge of currents, winds, depths, migratory habits of fish, are essential for fishing at sea. Over time, man has discovered new materials and new fishing techniques.

A bit of

history

In prehistoric times, fish was caught and eaten fresh, due to the warm climate of Mediterranean countries, or subjected to rudimentary drying processes

A bit of history

Cefalù (Sicily, Italy, Mandralisca Museum)

Ostia (Italy)

Naples (Italy, National

Archeologic
Museum)

A bit of history

The range of fishing boats increased rapidly with the advent of the industrial revolution. Yields increased 4 times compared to sailing boats. Other innovations such as rail transport transformed fishing into an industry.. With the advent of diesel engines, large ships were able to remain at sea for months following the large seasonal abundances of fish species. This led to the development of the fishery called "Distant water" which developed on a global scale.

Jennings, Kaiser, Reynolds

Wennings, Kaiser, Reynolds

Notes on the economic importance of the fishing sector

TABLE 1 WORLD FISHERIES AND AQUACULTURE PRODUCIION, UTILIZATION AND TRADE ${ }^{\text { }}$						
	1986-1995	1996-2005	2006-2015	2016	2017	${ }^{2018}$
	Avercge per yeor					
			(million tonnes,	liva weight		
Production						
Capture						
Inland	6.4	8.3	10.6	11.4	11.9	12.0
Marine	80.5	83.0	79.3	78.3	81.2	84.4
Total capture	86.9	91.4	89.8	89.6	93.1	96.4
Aquaculture						
Inland	8.6	19.8	36.8	48.0	49.6	51.3
Marine	6.3	14.4	22.8	28.5	30.0	30.8
Total equaculture	14.9	34.2	59.7	76.5	79.5	82.1
Total world fisheries and aquaculture	101.8	125.6	149.5	166.1	172.7	178.5
Utilization ${ }^{2}$						
Human consumption	71.8	98.5	129.2	148.2	152.9	156.4
Non-food uses	29.9	27.1	20.3	17.9	19.7	22.2
Population (billions)?	5.4	6.2	7.0	7.5	7.5	7.6
Per capita apparent consumption (kg)	13.4	15.9	18.4	19.9	20.3	20.5
Trade						
Fish exports - in quantity	34.9	46.7	56.7	59.5	64.9	67.1
Share of exports in total production	34.3\%	37.2\%	37.9\%	35.8\%	37.6\%	37.6\%
Fish exports - in value (USD billions)	37.0	59.6	117.1	142.6	156.0	164.1

Global food fish consumption increased at an average annual rate of 3.1 percent from 1961 to 2017, a rate almost twice that of annual world population growth (1.6 percent) for the same period, and higher than that of all other animal protein foods (meat, dairy, milk, etc.), which increased by 2.1 percent per year. Per capita food fish consumption grew from 9.0 kg (live weight equivalent) in 1961 to 20.5 kg in 2018, by about 1.5 percent per year.

Notes on the economic importance of the fishing sector

FIGURE 1
WORID CAFTURE FISHERISS AND AQUACUITURE PRODUCIION

NOTE: Excludes aquatic mammals, crocodiles, alligators and caimans, seaweeds and other qquatic plants. SOURCE: FAO

FIGURE 2
WORLD FISH UIIIIZATION AND APPARENT CONSUMPIION

Notes on the economic importance of the fishing sector

NOTE: Excludes aquatic mammals, crocodiles, alligators and caimens, seaweeds and other aquatic plants. SOURCE: FAO.

Notes on the economic importance of the fishing sector

 1950-1987. Av. $=$ Averoges pery your.
source: fao.

Notes on the economic importance of the fishing sector

Outline Lecture 1

- A bit of history
- Key definitions \& concepts

Fisheries science

Fisheries science is the academic discipline of managing and understanding fisheries. It is a multidisciplinary science, which draws on the disciplines of limnology, oceanography, freshwater biology, marine biology, meteorology, conservation, ecology, population dynamics, economics, statistics, decision analysis, management, and many others in an attempt to provide an integrated picture of
 fisheries.

Halieutic production definition

The halieutic production is the exploitation of the aquatic alive resources. It includes the various modes of exploitation and management (fishing, fish farming) of alive species (vegetable or animal) exercised in all the aquatic circles (sea and river).

Halieutic resources

Demersal

Living in close relation with the bottom and depending on it.

Pelagic

Fish that spend most of their life swimming in the water column with little contact with or dependency on the bottom.

Small pelagic: (Anchovy, Engraulis encrasicolus; sardine, Sardina pilchardus),

Large pelagic: Tuna (Thunnus thynnus and other), Swordfish (Xiphias gladius), etc.

Edible molluscs

e.g.: Bivalv mollusc, Baby clam (Chamelea gallina), Mussel (Mytilus galloprovincialis)

Fisheries diversity

- Artisanal
- Traditional
- Small-scale
- Recreational
- Commercial
- Industrial
- Subsistence
- Coastal
- Offshore
- Distant waters

(a)

(c)

(b)

(d)

Fig. 1.6 The diversity of fisheries. (a) Fish traps set in the Lupar Estuary in Sarawak to catch prawns and small fish (see Blaber, 1997), (b) cast-netting for prawns in a small estuary near Mukah, Sarawak, (c) a tuna purse seiner trans-shipping catches to a freezer vessel in the Seychelles, and (d) tuna fishing from a small boat off Cape Verde Islands (d). Photographs copyright S. Blaber (a, b), S. Jennings (c), M. Marzot (FAO photo, d).

Fishing Disturbance

Fishing gears

Source: Seafish, 2021
Fishing gears: purse seine

Fishing gears: beach seine

Source: Seafish, 2021

Fishing gears: otter trawl

FIGURE 13
Components and terms of a typical single boat bottom otter trawl (OTB 03.12). Details of examples of different types of otter boards and groundgear (footrope) can be seen in Figure 14 and Figure 15

FIGURE 14

A representative selection of otter boards
in use in single boat bottom otter trawls (OTB 03.12) around the world. (a) slotted cambered otter board wooden rectangular otter board, (b) V-shaped otter board, (c) slotted oval otter board, (d)

Typical otter boards for bottom otter trawls

Source: Seafish, 2021

Fishing gears: bottom otter trawl

Fishing gears: midwater pair trawl

A compressor onboard the vessel pushes high pressure water jet through a hose (thick line) to fluidize the substrate and wash out bivalves in the sediment, allowing the cage-like dredge to collect the animals (bottom right)

A fleet of set gillnets (GNS 07.1) set on the bottom with anchors at each end, and buoys and highflyers on the surface

Fishing gears: gillnets

[^1](a) The white netting indicates large-mesh outer layer nets, and the dark small-mesh netting indicates the inner layer net. (b) Fish catch mechanism. The black line represents the inner layer small mesh, while the mesh-like blue lines represent the two large-mesh outer layers. Fish are pocketed when the small mesh
layer is pushed through one of the large-mesh layers

FIGURE 43
A fleet of pots (FPO 08.2) set on the seabed

Fishing gears: pots

Fishing gears: fyke net

Source: Seafish, 2021.

Fishing gears: longlines (demersal)

Fishing gears: longlines
 (pelagic)

TABLE 1
Revised International Standard Classification of Fishing Gears (ISSCFG), Rev. 1 (2016)

Gear categories (First tier)	Subcategory (Second tier)	Standard abbreviations	15SCGG code
SURROUNDING NETS	Purse seines Surrounding nets without purse lines Surrounding nets (nei)	$\begin{aligned} & \text { PS } \\ & \text { LA } \end{aligned}$ sux	$\begin{aligned} & 01 \\ & 01.1 \\ & 01.2 \\ & 01.9 \end{aligned}$
Seine nets	Beach seines Boat seines Seine nets (nei)	$\begin{aligned} & \text { sB } \\ & \text { sV } \\ & \text { sX } \end{aligned}$	$\begin{aligned} & 02 \\ & 02.1 \\ & 02.2 \\ & 02.9 \end{aligned}$
trawls	Beam trawls Single boat bottom otter trawls Twin bottom otter trawls Multiple bottom otter trawls Bottom pair trawls Bottom trawls (nei) Single boat midwater otter trawls Midwater pair trawls Midwater trawls (nei) Semipelagic trawls Trawls (nei)	TBB отв от оTP Ртв тв отм PTM тм TSP TX	03 03.11 03.12 03.13 03.14 03.15 03.19 03.21 03.22 03.29 03.3 03.9
DREDGES	Towed dredges Hand dredges Mechanized dredges Dredges (nei)	DRB DRH DRM DRX	04 04.1 04.2 04.3 04.9
LIF NETS	Portable lift nets Boat-operated lift nets Shore-operated stationary lift nets Lift nets (nei)		$\begin{aligned} & 05 \\ & 05.1 \\ & 05.2 \\ & 05.3 \\ & 05.3 \\ & 05.9 \end{aligned}$
FALING GEAR	Cast nets Cover pots/Lantern nets Falling gear (nei)	$\begin{aligned} & \text { FCN } \\ & \text { FCO } \\ & \text { FG } \end{aligned}$	$\begin{aligned} & 06 \\ & 06.1 \\ & 06.2 \\ & 06.9 \\ & 06.9 \end{aligned}$

Gear categories (First tier) (first tier)	Subcategory (Second tier)	Standard abbreviations	${ }^{15 S C F G 6}$ code
GILNETS AND ENTANGUNG NETS	Set gillnets (anchored) Drift gillnets Encirding gillnets Fixed gillnets (on stakes) Trammel nets Combined gillnets-trammel nets Gillnets and entangling nets (nei)	ans GND GNC GNF GाR GTN Gen	
traps	Stationary uncovered pound nets Pots Fyke nets Stow nets Barriers, fences, weirs, etc. Aerial traps Traps (nei)	$\begin{aligned} & \text { FPN } \\ & \text { FPO } \\ & \text { FFK } \\ & \text { FSN } \\ & \text { FWR } \\ & \text { FAR } \\ & \text { FIX } \end{aligned}$	08 08.1 08.2 ${ }^{08.3}$ 08.4 08.5 08.6 08.9
HOOKS AND LINES	Handlines and hand-operated pole-and-lines Mechanized lines and pole-and-lines Set longlines Drifting longlines Longlines (nei) Vertical lines Trolling lines Hooks and lines (nei)	LHP LHM LLS LLD LL LVT LTL Lx	09 09.1 09.2 09.31 09.32 09.39 09.4 09.5 09.9
miscellaneous gear	Harpoons Hand implements (Wrenching gear Clamps, Tongs, Rakes, Spears) Pumps Electric fishing Pushnets Scoopnets Drive-in nets Diving Gear nei	HAR MHI MPM MEL MPN MSP MDR MDV MIS	$\begin{aligned} & 10 \\ & 10.1 \\ & 10.2 \\ & 10.2 \\ & 10.3 \\ & 10.4 \\ & 10.5 \\ & 10.6 \\ & 10.7 \\ & 10.8 \\ & 10.9 \end{aligned}$
GEAR Not known	ar not known	NK	99

An example illustrating the potential third tier in a three-tier classification system: Trawls (first tier) - Single boat bottom otter trawls (second tier). The catch in the third-tier gear is recorded by local, national or regional authorities, but may be aggregated to the second tier when reporting to FAO

Fishing gear classification tiers

Why manage fisheries?

Because the resources are not
unlimited and poor management has
led over the centuries / years to the
collapse of some stocks and to the
general state of overfishing of most
stocks (at the Mediterranean and
global)

Because some types of fishing have a strong impact on the environment and contribute to the fragmentation and / or destruction of the habitat and the loss of biodiversity.

Objective	Biological	Economic	Social	Political
Protect habitat	*			
Increase selectivity	*			
Prevent mortality of rare species	*			
Prevent ecosystem shifts	*			
Rebuild overexploited stock	*			
Reduce discarding	*			
Maximize protein supply	*		*	
Maximize income		*		
Maximize profit		*		
Maximize employment			*	
Keep prices low		*		
Minimize variability in catch			*	*
Minimize variability in income		*	*	
Reduce overcapacity			*	
Raise government revenue		*	*	*
Improve catch quality		*		
Increase exports		*		
Do not upset lobby groups			*	*
Do not upset fishers			*	*
Do not upset conservationists			*	*
Preserve status quo			*	*
Reduce conflicts			*	*
Boost sport fisheries			*	

Why manage fisheries?

Fisheries science provides important information to the managing authorities, in the case of Italy the MIPAAF and at the highest level to the FAO Italy, like all Mediterranean countries, are also managed by the GFCM = General Fisheries Commission for The Mediterranean which is an RFMO = Regional fisheries management organization

Fig. 1.11 Stages in the management of fisheries where fisheries scientists provide advice. They also receive feedback throughout the management process, especially through monitoring of the fishery.

Questions

Fisheries in the Adriatic Sea: management toward sustainability

Teaching Week 2024

Resource evaluation

How many fish in the sea?

In reality and in connection to the society and economy, this is the package of stock assessment and ecosystem management

Abundance

How

 many fish in the sea?
Fish stock

The living resources in the community or population from which catches are taken in a fishery. Use of the term fish stock usually implies that the particular population is more or less isolated from other stocks of the same species and hence self-sustaining.

Population dynamics and processes

The von Bertalanffy growth equation

Population processes used in fisheries biology

Age

Lifespan, longevity and age determination methods

Growth

Length-weight relationships, growth parameters, interrelationships and methods

Reproduction

Size at maturity, onset and duration of spawning, fecundity

Mortality

Natural, fishing, total and methods of estimation

1. For studying the biology of marine organisms even of non-commercial ones
2. Assessing the stock status using single-species approach and methods

Usually stock are assessed using age-based methods that require the estimation of all biological parameters (length-weight relationships, growth parameters, length at maturity, natural mortality) by age or by length, which is then converted to age using an inverse von Bertalanffy equation

Often not available

Age

Lifespan, longevity and age determination methods

Growth

Length-weight relationships, growth oters, interrelationships and
methods

Reproduction

Size at maturity, onset and duration

Mortality

Natural, fishing, total and methods of est
 estimation of all biological parameters (length-weight relationships, growth parameters, length at maturity, natural mortality) by age or by length, which is then converted to age using an inverse von Bertalanffy equation

Available data used in fisheries biology

Catches

Landings by species, by year, statistics, discards

Effort

Number of vessels, number of days at sea

CPUE

Abundance data from survey or from commercial data

Expert knowledge

Changes in fishery regualtion, resiliance of a species

1. To understand the status of a stock in term of Fishing mortality and Biomass
2. To allow management procedures.

Usually stock can be assess with production models that does not require the estimation of all biological parameters by age or by length, but only fishery statistics

MSY and reference points in fisheries

Maximum sustainable yield (MSY) is one of the fundamental concepts in fisheries science

It refers to the removal of the largest possible biomass without risking the collapse of a stock

«Live on the interest and not the capital»

Assessing stock status

Fishing effort \rightarrow mortality

Profit for fishers is also maximized near MSY

Assessing stock status

Fisheries management

Management decisions are (ideally) based on fisheries reference points that are related to:

1. the intensity of fishing F (fishing mortality, fishing effort, fishing pressure)

Common reference point: F/Fmsy

Should be low to ensure stock renewal.
2. the state of the stock \mathbf{B} (biomass, abundance)

Common reference point: $\mathrm{B} / \mathrm{Bmsy}$

Should be high to ensure high catches.
3. the age and stock structure of the population Common reference point: L/Lopt
Should be as close to unexploited stock conditions.

Fisheries management

5852525
Management target For a healthy fishery, we want fish stocks to fluctuate around this level.

Soft limit
If a fish stock falls below this level, we manage it to rebuild it For example, we reduce the total amount of fish that fishers can catch.
\square
Hard limit
If a stock falls below this level, we consider it 'collapsed'. We may close the fishery to rebuild it.

Fisheries reference points

Stock status and exploitation are two different terms that are often confused

Stock status refers to the biomass (B) of a stock compared to the biomass that corresponds to the MSY ($\mathrm{B}_{\mathrm{MSY}}$) - it is a biological concept and depends on the population characteristics of a species It has to be high ($B>B_{M S Y}$)

Exploitation refers to the fishing pressure (F) Applied to a stock compared to the one that ensures MSY ($\mathrm{F}_{\text {MSY }}$) - relates to the fleet and fishing intensity It has to be low (F < F Msy)
A stock is healthy only when both conditions apply at the same time
> (+ a third one related to the size and age structure of a population))

Fisheries reference points

The NE Atlantic stocks are in better condition compared to the Mediterranean ones that are concentrated in the RED area of the plot

+ : Atlantic

\oplus : Mediterranean

The third condition is even worst for most commercial stocks

The mean length of hake in the Ionian Sea declines since 1998
MERLMER_GSA_20__GRC_ (data from MEDITS-a fisheries independent survey)

Time to start saving!

The illusion that higher fishing effort results in higher profits...

Only cost is linearly related to fishing effort

Profit is maximized ONLY when stocks are sustainably exploited.

Ecosystems malfunction and become less resilient to external pressures (e.g. climate change)

Shifting the baseline syndrome
Fish used to be larger

Questions
$\mathbb{G}^{\mathrm{CNR}}$

Aliens in the Adriatic sea!

The problem:

Journal of Fish Biology (2000) 56, 1545-1547
doi:10.1006/jfbi.2000.1263, available online at http://www.idealibrary.com on IDEAL

First record of the bluespotted cornetfish from the Mediterranean Sea
D. Golani

Department of Evolution, Systematics and Ecology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel

Received 21 January 2000, Accepted 6 March 2000)
Three specimens of the Indo-Pacific Bluespotted cornetish Fistularia commersonii are recorded for the first time from the Mediterrancan. The presence of this species in the Mediterranean is

Fig. 1 Cumulative occurrences of F. commersonï̀ in the Mediterranean Sea from December 2000 to October 2011. Data consisted of
191 georeferenced records pooled from both bibliographic sources and other confirmed observations 191 georeferenced records pooled from both bibliographic soures and other confirmed observations

Fig. 1 Cumulative occurrences of F. commersonii in the Mediterranean Sea from December 2000 to October 2011. Data consisted of 191 georeferenced records pooled from both bibliographic sources and other confirmed observations

Animation provided by ORMEF database
Azzurro et al. "Exotic fish species in the Mediterranean Sea: analysis of occurrence records." Rapp Comm Int Mer Médit 40 (2013): 508.

The approach:

WHY INVOLVE LOCAL PEOPLE IN THE MONITORING
PROGRAMS?

PROVIDE THE FIRST DETECTIONS

Ask to the fishermen

ARE THERE SPECIES THAT HAVE APPEARED IN THE LAST YEARS THAT WERE NOT THERE BEFORE?

CIESM

The Mediterranean Science Commission

$$
\begin{gathered}
\text { HOW } \\
\text { FREQUENTLY DO } \\
\text { THEY APPEAR IN } \\
\text { CATCHES? }
\end{gathered}
$$

$\stackrel{\rightharpoonup}{v}$

Boughedir et al., 2015 (submitted)

The questionnaire:

$$
2
$$

Coryphaena hippurus «Lampuga»

II pesce palla maculato, Lagocephalus sceleratus è entrato in Mediterraneo nel 2003 attraverso il Canale di Suez. E' una specie tropicale tra le più invasive dei nostri mari, ha colonizzato buona parte del bacino orientale ed è attualmente in espansione geografica. La sua presenza in acque italiane é stata registrata per la prima volta nel 2013, nell'isola di Lampedusa. Da allora, altri esemplari sono stati catturati nel canale di Sicilia, nel mar Adriatico ed in Spagna. Si distingue facilmente da altri pesci palla per la presenza di macchie scure sul dorso.

La tossina mantiene le sue proprietà anche dopo la cottura

CNR
Consiglio Nazion
delle Ricerche
ISMAR
(B)MER Istituto di Scienze Marine

The projectis sof funded by the European unie

TETRADOTOSSINA (TTX):

- Neurotossina
- Fam. Tetraodontidae (pesci palla)
- Isolata per la prima volta nel 1909 (Yoshizumi Tahara)
- 100 volte più tossica del cianuro di potassio (25 mg sufficienti ad uccidere)!
- Primo avvelenamento registrato nel diario di bordo del capitano James Cook (avvelenamento della ciurma e delle riserve alimentari viventi...i maiali)
- Sintomi: mancanza di fiato, ottundimento, «testa leggera», dispnea, cianosi, ipotensione, paralisi, aritmia cardiaca, convulsioni
- Assenza di terapia medica!

Biochemistry of the TETRADOTOXIN:

The projectis co funded by the European Uniis

Fugu:

- Served in Japan (qualified cooks who know how to extract poison from meats). Sometimes a little enough toxin is left to give a slight euphoria and a little tingling to the lips and tongue!
- In Italy it has been prohibited since 1992
- In Japan between 1996 and 2006 there were 44 cases of poisoning (6 deaths/year)
- Wade Davis (Harvard University) in 1984 managed to obtain in Haiti the "zombizing" powder used by voodoo sorcerers: TETRADOTOXIN
(in small doses leads to a trance-like state)

Lichia amia
 «Leccia»

Pomatomus saltatrix «Pesce serra»

(3)

Sardinella aurita «Alaccia»

Siganus luridus «Pesce Coniglio»

Siganus rivulatus
«Pesce Coniglio Marmorizzato»

Sphyraena viridensis «Barracuda Boccagialla»

Trachinotus ovatus «Leccia stella»

Nemipterus randalli «Nemiptero»

Cheilodipterus novemstriatus

Cephalop(h) dis taeniops
Cephalopholis taeniops «Cernia atlantica»

Saurida undosquamis «Pesce lucertola»

Hemiramphus far «Blackbarred halfbeak»

Pterois miles «Pesce scorpione»

Stephanolepis diaspros «Monacanto reticolato»

Callinectes sapidus «Granchio Blu»

Dispanopeus sayi

For any information

 orTo send photos, reports, comments:

luca.bolognini@cnr.it

Spatial distribution of fishing effort (otter, pelagic, and rapido trawls, hydraulic dredge, SSFs) and other activities (energy, aquaculture, transport) were analysed using GRID Aim: quantify spatial conflicts and test a future scenario (trawling ban inside 6 nm)

GeoReference Interaction Database GRID v. 1.2

Home page	About	Schema	Setup attributes	Setup Activities	Setup rules	Interactions	Matrices	Load maps	Maps	Administrator tools
	COENASt Interaction in coastal waters GeoReferenced Interactions Database GRID									

Interaction matrix showing conflict scores
Conflist scores are calculated using 5 key attributes of each activity (vertical scale, spatial scalem location, time scale and mobility) and basing on a set of rules

"
 GeoReference Interaction Database GRID V. V. 1.2

GeoReference Interaction Database

 v. 1.2

Thanks for your attention!!!

Fig. 2.1 The proportion of ocean area by depth. The mean depth of the oceans is 3.7 km and oceans cover 70% of the globe. Data from Sünderman (1986).

Other aspects:

Because each country can fish within its territorial waters and (if it has) in the so-called exclusive economic area (EEZ). The so-called ABNJ, areas beyond national jurisdiction, are "no man's lands"

Oceans' characteristics: horizontal zonation

Most of the fishing activities take place on the continental shelf. Small-scale fishing takes place almost exclusively on the platform.

Canyons

Professional fishing also takes place on the continental slope. In the Mediterranean the maximum limit for trawling is 1000 m of depth. Also in the Mediterranean, red shrimp fishing is carried out mainly in canyons.

Canyons

1. French trawlers
2. French gillhetters
3. Spanish trawlers

Sectors of activity of the various components of the Franco-Spanish fishing fleet exploiting halieutic resources in the Guff of Lion.

Trawl-induced and natural sediment accumulation rates in the studied submarine canyons. (Paradis et al., Sci. Rep. 2017)

Seamounts

- Seamount fishing is not carried out in the Mediterranean but is quite common in several ocean areas (especially the Pacific and
 Indian).

Seamounts

Food supply

Deep-sea fishing is limited for several reasons:

- distance from the coast (high costs for small fishermen)
- very low yields (see below), except for the environments seen above

It is extremely limited (except at hydrothermal vents) organisms must survive in an environment where food is scarce and low in calories

Mediterraneans' characteristics

Large areas of the continental shelf (Adriatic, Sicily channel, Gulf of Lion), but also bathyal beds, up to 5000 m . The maximum depth of 5267 meters is found in the Hellenic Trench in the southern coasts of Greece (Calypso Deep). In the Mediterranean, thanks to a restriction imposed by the GFCM, trawling is prohibited below 1000 m depth.

Mediterraneans' primary production

UPWELLING

Upwellings

- Upwelling is an oceanographic phenomenon, influenced by winds, which involves colder and denser (and nutrient-rich) water masses that rise from the depths, replacing warmer (and nutrient-poor) surface waters. They are highly productive areas.

Upwellings
upwelling map of globe

Questions

[^0]: The aim of this workshop is to collect your opinion on the interaction between fishing and biodiversity. Q methodology will be used and it provides a foundation for the systematic study of subjectivity. A set of statements is presented about the topic and it is asked to rank-order them from "agree" to "disagree", an operation referred to as Q sorting. There is obviously no right or wrong way to provide your own point of view.

[^1]: Source: Seafish, 2021

